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ABSTRACT

In this paper, we consider the following abstract problem. Let (E,P)a

be an ordered Banach space with cone P having a nonempty interior P. Let

I,12 e R, A, 12, a,b e P, such that b - a e P. Let the operator

K : (A ,X2] x [a,b] + [a,b] be compact, strongly increasing with respect to

the second variable for fixed X e (A ), strictly increasing with respect

to the first variable for fixed u e [a,b]. Moreover, assume that a is the

only fixed point of K(XI ,*) and that b is the only fixed point of

K(A 2,s). Consider the equation

(M) u = K(1,u)

Under the above assumptions, we prove that any closed connected subset of

solutions of (*) in [1I . ] x [a,b] which meets (111a) and ( 2 ,b),

contains the maximal and the minimal solutions of (M), which are obtained by

monotone iterations. Such a subset of solutions is shown to exist.

Applications to a semilinear elliptic eigenvalue problem are studied.

AMS (MOS) Subject Classifications: Primary 47H07, Secondary 47H10, 35J65
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SIGNIFICANCE AND EXPLANATION

---Certain physical phenomena can be modelled by the nonlinear eigenvalue

problem

(P) -Au - ;g{u,u) in 0

U - 0 on r- a

Under minimal assumptions on the nonlinear term ,vwhich may be of interest

in some applications the existence of solutions can be obtained by several0)

known methods. The purpose of this paper is to compare two such methods,

namely the continuation method due to Leray and Schauder as extended by

Rabinowitz, and the method of monotone iterations. Our results are then

applied to problem (P).

The responsibility for the wording and view. expressed in this descriptive
summary lies with FRC, and not with the author of this report.
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SOME REMARKS ON THE CONTINUATION METHOD OF.4--
LBRAY-SCHAUDER-RAEINOWIZ AND THE METHOD OF MONOTONE ITERATIONS

Philippe Clment*

1. INTRODUCTION.

Let (EP) be an ordered Sanach space, see 11, p. 627]. For a,b e z, a ( b,

[a,b] denotes the order-interval (u e Ela C u C b). "

* Let K : [a,b] e [Cb] be a compact mapping, i.e. K is continuous and the range

of K is relatively compact in Ia,b].

Since [a,b] is closed and convex in E, it is a consequence of Schauder's theorem,

that K possesses at least one fixed point in Ia,b]. If K is also increasing, i.e.

u 4 v implies K(u) 4 K(v), then the existence of a minimal (reap. maximal) fixed point

of K, which we denote by ( Creep. 6), is easily established by an iteration procedure

[1, p. 639).

(n) (n

If we also assume that (8,P) is normal [1, p. 627] and that P has a nonempty interior

, then (a,b] is a bounded set of E, with nonempty interior (a:bl, provided that -

a (( b, i.e. b - a .

The Leray-Schauder degree of I - K relative to [ab], d(I - K,[aob]), see for

example (61, is then well-defined, whenever K has no fixed point on the boundary of

.. (a,b] e.g. when K maps la,b] into its interior. Note that this implies

: (1.0) a << X(a) and K(b) <( b

Conversely if K satisfies (1.0), then a sufficient condition for K to map (a,b] into

its interior is that, K is strongly increasing, i.e. u < v implies K(u) << K(v). We

shall assume K strongly increasing and satisfying (1.1). d(I - K,ta[eb]) is easily

computed by considering the compact homotopy:

*Partially supported by the Mathematics Department, Technische Hogeschool Delft,
* The Netherlands. .....

Sponsored by the United States Army under Contract No. DAAG29-0-C-0041.
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...t..- - (1-. 1) p.M u) - u - 01 - c t) - (u t e 0,1]

. u e [a,b], with c e (ab]

Then. d( -K[aebl) d(NHll ,1 b]) - d(H(t,e),[a~b]) = d(H(O,)la*bl) - 1,-

t 6 [0,1], by noting that the solutions (t.u) of

( (1.2) H(t,u) = 0, t e [0,1], u e [a,b] w

satisfy u e (aeb].

Since d(H(t,.*),[ab]) is constant and # 0. for t e E0.11. it follows from [6.

Corollaire 10, p. V - 161, that there exists a subset C of solutions of the equation

(1.2) which is connected in (0,11 x ta,b) equipped with the product topology, and which

meets (0,c) and at least one point (1,u) where u is a fixed point of K. A natural

question arises, namely which fixed points u can be areached by the homotopy" or more

precisely which fixed points ; of X belong to the component of (0,c) in

[0,11 x [a,b]. In particular are C1,i1), (1,;j e C?

In section 2, we shall prove that if a 4 c < K(c) < I, then the component C of

(0,o) in [0,11 x [a,b] meets [1,6] and that (t,u) e C, 0 < t < 1 implies u <<

Similarly, one could consider the homotopy H(t,u) = u - (1 - t)K(u) - to. t e (0.11. 01

u e (a,b]. Then provided that a < K(c) < c 4 b, then a, the component of (1,c)

meets (0,a) and (t,u) e c, 0 < t < 1 implies u << u.

If ' < a and if there exist u,,u 2 e (a,b] satisfying.YI < 2
(1.3) U) ( u 2  I

u 1 )(. 1 . a2 C ,,

then, Amann (21 proved that there exists a third fixed point u such that (< i << "

satisfying u u1  and u2  u, See [1, Theorem 14.2, p. 6661. Consider the homotopy:

. u - (1 - 2t)a - 2tK(u) t e [0, 1/2]
(1.4) H(t,u) ,

( u - 2(1 - t)K(u) - (2t - I)b t e (1/2.1]

u 6 [a,b], and define

9 := ((t,u) e 10,11 K [s,b)lh(t,u) -0)

-2--.
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then, if C1  is the component of (O,a) in 8, we know by what preceeds that C1

" contains ( 1/2 .;)a similarly, C2 the component of (1,b) in 8 contains ( 1/2 , ) we

shall prove in section 2, that there exists a connected set C3  in I, which meets

1/2 ,A), ( 1/2.) and at least a third point (1/2 , ) where ; in a fixed point of X 2
satisfying u u u2 ;. -

These results are special cases of Theorem 2.1 where a general homotopy

(1.5)u -K(A,u), A e IA 2, u e (a,b]

is considered. There X is a compact mapping, which is strongly increasing min u" for

A e (1,X2 ) and strictly increasing *in A for u e (a,b). Then if a (resp. b) is

the only fixed point of Kl(Al*) (resp. KlA 2.*ll, we prove that C the component of

*(Alfa) in S a- {(Au) e EXA 2  I a,bIju - X(A,u)) meets ( ,b), and contains all

maximal and minimal solutions of (1.5) for A e (A A ). Thus Theorem (2.1) relates the
1'2

solutions of (1.5) obtained by applying the continuation method of Leray-Schauder- -

Rabinowitx [61 and the solutions of (1.5) obtained by monotone iterations [ll.

in section 3, we give an application of the results of section 2 to&a semilinear

elliptic problem;

-a Ag(,u) in 8 C-

u 0 in .. -

where we refine some results of [3), [41.
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2.-TH.MINRM- .TI '. - .

)-o,,T . "... -"

Throughout this section, (EP) denotes an ordered Banach space with cone P having

0
a nonempty interior P, (We do not assume (E*P) to be normal), a,b e 3 such that

a << b, and A 1 a2 R such that A < A
21 2

K : (I A1 ] x [a,b] + [a,b] is continuous and has a relatively compact range in

oub i (whore [ 1 1 A2 ] x (a,b] is equipped with the product topology). S denotes the set

I ~~of solutions of ' ':

(2.1) u = K(.,u) (A'u) e [ 11 A21 x (ab]

For A e (AV 1 2 , f(A) (reap. u(X)) denotes the maximal (resp. minimal) fixed

point of K(,.) in [ab] which are known to exist. We have

Theorem 2.1. Lot K defined as above satisfy the following assumptions;

(i) For each A e (e ,A.Ae2K 
) is strongly increasing.

(ii) For each u e [a,b], K(-,u) is strictly increasing 0-

(iii)a.b a (reap. b) is the only fixed point of K(A11 . (reap. MYA2 .)). Then
...

(1) C the component of (1Aa) in S meets (X2 b). O

(2) Any closed connected set D in 5 which meets (A11a) Lnd (A b) contains

all maximal 8(M) and minimal '1AM fixed points of K(,e), A e (A1 ,A 2 1. Moreover, for

each A (A1 1 A2 )"

(2.2) U(M) - sup ;(u) = lim(i) .'4

(2.3) G(A) = inf 8(u) = lim d(M)

2

4(2.4)(3) If for some e (A1 <2 ), d() ,(A), and if there exist Ul, u2  satisfying:-

(2.4) <( u1 < u2 <

(2.5) u1 > K(,U ); u2 < K(I,u)
'1 2 2

Then, any closed connected set D in S which meets A,,1 a] and (E2 ,b] contains a

point [Au where u u, U2  U.

20
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Remark I: If K satisfies (i), (ii) and (iii) a a is the only fixed point of V No1*)

but b is not the only fixed point of Ko 2,,*)* then one can apply the theorm onJal

( 11)x (aJ*(A )], provided that a <<u( 2) Indeed, ( imle

K(A'u) 4 K(X,i( A2 )) -C K(A2 J1 (A2 )) - i('%2)' for I e [A I1A2 1. Then u (2 ) play. the role

of b. Similarly, when a is not the only fixed point of K(A1 ) but b in for

Remark 2t When K satisfies Mi, (ii) and (iii)a and a 4( fiCA < b, then from what

preceeds we know that there is a connected met C1  in sn X E 1 A 1 ta.Ma( )] which

seets (Alta) and (1 2 0E(X 2 )). A priori the component C of ()i11a] in S may not be

contained in [AlfA2 I X (ALOL~)] The following leama, which will be useful in the proof

* of Theorem 2.1, shows that (A~u) e c implies u e (a,;(A).

Linma 2.2. Let K be as in Theorem 2.1 satisfying-(i, (ii), and (iv): c is a fixed -

point of K(X1~ and d is a fixed point of C(A I-) such that c < d.

Lot cc denote the component of (Aifc) i n [A,,.%21 x [a,b). Then for each

eAu C,

(2.4) u << d holds.

Similarly, let Cd denote the component of (A2*d) in S A (A111 x Ea~b]. Then for

* each (AIU) e C,

(2.5) c << u holds.

Proof of Loma 2.2.

Let A (.%,Au) e c6I u d)Q. Then A * ,since (A1 c) e A, moreover A is closed in

c.For (A,u) e A, we have u < d. Otherwise u ( u)CICA 2 ,u " C 21c,=d

* contradiction. Thus ui - K(A,ti) << K(Apd) < KC(A2 d) -d and u << d. This and the fact

that A < A2 for (A,u) e A imply that A is open in Cc. Thus A C and (2.4)

holds. The second part of the lema is proved by exchanging the role of

1,c) and %A2,d) and reversing the inequalities.

Remark. The proof of Leama 2.2 is similar to the proof of part 2 of Theorem 1 of (4).



Proof of Theorem 2.1.

we first prove assertion (2). Let e (1,2). We denote by D1 the component of

7- (1,,a) in D A (n Q ,1) x (sb). We claim that

a) sup .- -
(Alu)601

b) ().,u) e DI implies U -9(W).

First we prove a) . Assume that sup A C Then, there exists e ( %1) such that
(Xou)eD-1 1

D i a n 1 x a,b]) - *. Set A - n n (( ) x (a,b]). A s * mince
Proj 1 I l'L 1D - (Af ' 2 1.

If vs define C :- D n (1 A,,] x [sb]) than C is a compact metric space, and

A, D-1 are closed disjoint subsets of C. There is not connected set D meeting both

A and D-1, otherwise DI 2 C by using the axiality of D and D1 n A , a

contradiction. Thus by a lema of point set topology, see for instance 16, Lemnma 1.91, -

there are closed disjoint subsets of C, C, and C2 such that D, C C11 A CC 2  and

C C U C Then define C - ((I,u) e DI ),I). C2  is closed

C A (c U C 3 and D - C1 U (C2 U C3 ), contradicting the connectedness of D.
C1  n 1 2 U 3) - . - ,

Thus, sup X = L. Next we prove b). Observe that b) is a consequence of Lema 2.2,
(A,u)eD

with A2  replaced by 1, c replaced by a and d replaced by ;(I). Note that

a << a(l), since a- K(Al a) < K(1,a) K(l,;(A)) = T(). hen K(A,a) << K(I,;()))

and a < KCl,a) << K(!,u(1)) = W(C). This proves b). By using a), b) and the fact that

the range of K is relatively compact in [a,b), there exist u e [a,b] and a sequence

(A nun) e Di such that lis A n I and lim unu. By using the continuity of K,
nn

u , K(!,u) and thus u(1) ( u. But from b) it follows that u 4 ;(A), th u =(A).

6. Since (A nUn) D, (1,0(A)) e D. For the un we could have chosen U(An). Since for

each sequence f(u n) such that un * as n * , there exists a subsequence which

converges to (),J(X)) we have also proven that ha 6(k) = suL fi(k) - 6(l). The second

part of the assertion of (2) is proven in a "dual" fashion.

6Next we prove assertion (1). From (iii)a,b and the compactness of K it follows that

lim (A) = a and lir Ca(A) = b. Thus, since b - a e P, there are a e (0. 1/2) and

A+iA+A 
2

-6-
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10, 2 e (0 ) such that 4(A) 4 a + G(b - a) for As (eA + 6) and

1) o - (b - a) for A e ( 2 - ,.X 2 ). Hence 1() << 10,) for A N1 1. 1 + C) and

P e - e). w claim that for each A e 1 1 1 + ) and ie - G,12), there is

a maximal connected set CAI in 8 n ([),u] x [ab]) which meets (4()) and

(0,11(0P). For t e [11,p, define Ot t- [K(t,a)I(t,b)]. Note that

K(t~a) << U'(t) 4 d(t) << K(t,b), for t e [A,P]. Then 0 s- U (t) x o0 is an open
te[ ,- "

subset of (ApI x [a,b] containing no solution of (2.1) on its boundary (as a subset of

(A,m] x [a,b]). we know that d(I - K(t,.),Ot) - 1, t e (x,vI. By [7, Corollaire 10,

V - 6], there exists a component CAP of 8 n ([A,] x [a,b]) which meets

03 x SA and (0) x S where St : - (u [a,b]lIt,u) e s), t [ 1 ,]A2. Next we prove

that CA, contains (At1A1) and (p.fi(v)). We denote by c any element of

* (A) x S r C,p. Note that Cc, the component of (A,c) in 8 n ([A,p] x [a,b]) is

C Next we define C , the component of (A,c) in S A) ([A,p) [a,b)) and as in EAXp c

the proof of part (2) one proves that sup t - P. and by applying the leamm 2.2, with
(t, u)ec.

A A 1 d, and D replaced by Apuv(p) and Cc, noting that c (4(A) (< (P), we

obtain u << ;(P) for (tu) e Cc" Then one chooses a sequence (tnu n ) * (pu) such

that tn + P, Un + u and one proves as in part (2) that u u(m). Thus (Pu(P))

belongs to the closure of C and hence to Cc C Similarly one proves that

(A,(A) s CX,, We conclude the proof of assertion (1), by noting that

U CA, is also connected and that its closure in [A.,IA 2 ] x [a,b] satisfies

A, 1C ILIA

2 2
., the requirements of assertion (1).

Finally we prove assertion (3). We define 01 z- [t-1  ) x [au 1
] and

02 :. (1I21 x [u2 *h]. 01 and 0 2 are open in "I1,21 x [a,b]. Let Ae (1,A), then

'. (AU'()) 5 01. indeed,

-. (2.7) a << 1(1 - K(Ai(A)) < K(1I, 1 A (I, < u1  •

-* Similarly, let u e (,A), then ( e,4(p)) 5 02. We know that (A(A)) D and
2 2

(pi(p)) e D. Since 01 and 02 are disjoint and D is closed and connected in

-7-



.. -... . . . . ...... .. ... ..

[A19, 2 ] x (.,b], there exists closad and connected in (A,X 2 ] x [a,b] such that
a) DC0' n o 2 .

1 2

b) D meets 301 and 3021 where 0i .... x Las.. .\ 1 1,2 and 30 is

i the boundary of O as subset of [A1 ,A2 ] x [a,b], i = 1,2.

301 = [A,J) x a[a,ul] U {1) x [a,u"

ao = A('] x3[ub] U (A) x [u ,b)

D n 1 , {(,a)} U B1

D 302 ((A 2 ,b)} U B2

where

B-" {(X,u) e DIA - A, u e (au ].

B (Au) eDIA -A ue u-.bl)

c cwhcNote that the component of 0 1no contains (Nsa) is ((A a)). Similarly for

(Ab). Thus DAB 1 *, and D nB #. We want to prove that
2P 2

.D c1 x (Ea,ul]c U [u 2 ,b]C)) * *, where [a,uilc - (a,bl\[a,ui], i = 1,2. Define

A X [, U b

"" Xl '1 [A1 '1 J (a,U1 ] U [, A2 1 x[2,blc.".

A2  A21 x a,u 1 Jc U (AA 23 x 'u 2 ,b-

Then A,, A2 are closed subsets of [AA2] x [a,b], and (DA A,) U (D A2 1  D.

D A , since n D B C DAn 1A Similarly D nA 2  $.Thus

D A AA *
1, 2

by using the connectedness of D. From the observation that (t,u) e D and ',a

t 4 A, u e (a,u1 ] (resp. t A A, (u2 ,b]) implies u e [au 1 ] (resp. [u2 ,bl), it

follows that 1 A A A2 n n ((1) X (u A [a~ u] 11. Thus there is (1,u) e D C D

such that u u1  and u2  U. If U U, then u ( u. indeed u 4 u implies

u - K(A,u) 4 K(I,u) ( uI . Thus u satisfies u u1  and u2  u. This completes the 1
1 14

proof of the assertion (3) and of the Theorem 2.1.

-8- S



3. AN EXA PlE.

We cqnsider the nonlinear eigenvalue problem:

Au - ,g(*,u) in .

*. u u 0 on r" 92 ""

where 0 is a bounded domain of Be with smooth boundary r. -

g a Q x R + R is continuous and g. exists and is continuous. A solution of (P) is

2,P
a part (A,u) e a x w (a) with p > N satisfying (P). Let i be a positive,

superharmonic, bounded, lower-semicontinuous function on 0 such that g(x,u(x)) - 0 a.e.

in 0 and such that g(x,u) > 0 for 0 I u f u(x), x e a. it was shown in [41, that

if S denotes the set of solutions of (P) in e+ x w2,P  equipped with the R x C 7]
-topology, and if C is the component of S containing (0,0), then C satisfies:

1) (u) e c\(0,0) implies u is positive, superharmonic and u(x) < u(x), x e Q.

2) for every X > 0, C has a minimal solution u(A).

- 3) lim nG(A) - - 0 p <
,.L

p
"

* For A > 0, we shall say that U(A) is the minimal (reap. maximal) solution of (P) in

(0,u] if (A,uIA)) (reap. (A,d(lA))) is a solution of (P) and for any solution (A,u)

,*' satisfying 0 ( u(x) ( ulx), x e 2, ulx) k w(A)(x), x e a (reap. u(x) 1 C(A)x),

The aim of this section is to prove the following:

" Theorem 3.3. C above defined contains for each A > 0 the minimal and the maximal

solutions in (0,u].

Proof. a) C contains the minimal solution u'(A) for each A > 0. Let > ) 0 and

vw() ) 0 be such that (3.1) w(l) + Agu(x,u) > 0 for A e [0,], and for

0 • u 4 u(x), x e 2. Then we rewrite (P) as

f-Au + wl3lu - w(A.u + Xg(lu) in 0,

u.0 on r

(P') is then equivalent with

-9-
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(p") u - K(A,u)"

u e z :- e 1(b)v- o on r}

equipped with the C norm, and

(3.2) K(A,u)x) : f Gw(x,y)[w( )u(y) + Ag(y,u(y))]dy

where G 1.,) denotes the Green function relative to -Au + w(I)u on D with Dirichlet

w

boundary conditions.

Note that by (3.2) K is defined on R x L () and takes its values in Z. in E

we introduce the cone *0

P :- (u e Iu(x) 20, x e 2)

of positive solutionsi it is standard that P has a nonempty interior P. Next we define

)u) + K(Au).

Z(A satisfies W~+wlul w(u0{,&i ) uCI) - o0: :-

Then u(I) e P and u(X) < u in 2. By our choice of w(0), this implies that

Kl,ull) C u(I). Since K(I,.) is increasing in u, K(I,.) : [0,u1111 + [O,u(A)] and

thus (P) has a minimal solution LOA). Note that 1) e P. By our choice of

w(I), u * K(A,u) is strongly increasing for Ae (0,1], increasing for A- 0, and

K(1,0) P 0 for A e (0,I) and K(A,;L(iC)) - ;i(") for %e t0,'I). Moreover K(*,u) is

strictly increasing in A for each u e (0,u()]. Thus, K : [0,11 x [0,6(0)] + (0,6(I)] -.

satisfies the assumptions of Theorem 2.1. There exists a connected set D of solutions in

R x CI which meets (0,0) and (1,u(A)). Since D C C, C contains (3,u(C)) and

obviously, 1() - uCA).

b) C contains the maximal solution (A) in (O,u] for each A 0. Let A > 0 0
and w(I) ) 0 be chosen as in a). We denote by S(1 ) : (u 6 (0,u]lu) is a solution

of (P) . K being defined as in a), we know that u e S, implies u 4(I ,u) - u(b), and

uo0. Thus sXe [0,u(I)j - [00K(I,;)]. Define A n + n, n e N. Then, since

4l(n) < ;(An+,), n e x (easily verified), we have K(,u(A)) n K(,ul(An+l)). Moreover_0

K(l,u) - 11m K(1,;(An)) follows from statement 3) before Theorem 3.1. We claim that
n

-10-ii 0'n
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(0,;(I,;)] - 0C,K(:.( . Indeed lot y e [BK1u] y definition, there is
n-n

a > 0 such that K(I,;) - v )P ms where * is an element of P. Moreover

K(A,u) -lim K(A.u;A() in C' implies the existence of a sequence (SIwithnn

lim 0 such that
n

n+"
K~lu - K~l~~i)) On9e, n e w

Thus K(X.UA )v (a - O)e, n e and there are x eV and cO> , such that
nn

KOA~iaOO~) - V ce

Thus v e [0,K(1,~i(AN))3 C U j0K1'X n Hence S-5AC U C0,K('I,'a(A)n Next we

observe that S is compact in C. Hence there is a e x, such that

SC U [O,K(1,(A) C

Note that v : K(lI;()) satisfies0

a+ wCl); -w(l)'a()L,) + lgq(*,'i(A )) in 0

v 0 on r.

and ~iA)satisfies

+ w(X)~A ) - ~l)~Ca) + A q(,~A) in

u(A 0on r

Since A > and q(.,;i(l >) 0, we have
m M

-AC;- (A + w(bC( ; (Am)) ( 0 in 0

v -(A 0on r.

Thus <((A and

Next, choosing w(A ) 0 such that g(u)7 ; AeEQI..1

0 4 u 4 ;(x), x e 2. one defines K as in a) and verifies that with this choice of
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w, K satisfies the assumptions of Theorem 2.1 on [0,)] x (0,u(A )]. Then, there is a
Is U

connected set D of solutions of (P) in R x C which contains the maximal solution

d(l) in [0,u(,X. But since SA C [Ou(Al)I 1(1) is the maximal solution in

[0,u]. Since D C C, C contains the maximal solution d1(A) of (P) in (0,u]. This

completes the proof of Theorem 3.1.

Remark 1. It is also a consequence of the proof that if we denote by CA the component of

. solutions of (P) in [0,A) x C which contains (0,0), then C - U CA.
bto A

Remark 2. In the "bifarcation case", i.e., when g satisfies g(x,0) - 0, x e a but
gu(XO) > o x e a, then a similar analysis shows that C - U CA when C is the

component of positive solutions "emanating" from (1 ,o), bifurcation point. Then for

A > Air C contains all maximal solutions in [0,u]. Note that in this case the minimal

solution in [0,u] is 0, but it is shown in (3], 14], that C possesses a minimal

solution for each A > A1.

L -12- ~*
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ABSTRACT (continued)
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K by monotone iterations. Such a subset of solutions is shown to exist.
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